Skip to content
- J. Baumeister. Stable Solution of Inverse Problems. Vieweg, Braunschweig, 1987.
- A. Borzi. Modelling with Ordinary Differential Equations. A Comprehensive Approach. (Chapter 11: Inverse problems with ODE models.) Chapman and Hall/CRC, first edition, 2020.
- D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin, Heidelberg, New York, forth edition, 2019.
- H. W. Engl. Integralgleichungen. Springer, Vienna, 1997.
- H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.
- M. Hanke. Conjugate gradient type methods for ill-posed problems, volume 327 of Pitman Research Notes in Mathematics Series. Longman Scientic & Technical, Harlow, 1995.
- M. Hanke. A Taste of Inverse Problems: Basic Theory and Examples. SIAM, Philadelphia, 2017.
- B. Hofmann. Regularization of Applied Inverse and ill-posed Problems. Teubner, Leipzig, 1986.
- B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative Regularization Methods for Nonlinear ill-posed Problems. Radon Series on Computational and Applied Mathematics. de Gruyter, Berlin, 2008.
- A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York, Berlin, Heidelberg, 1996.
- A. Kirsch and N. Grinberg. The factorization method for inverse problems. volume 36 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2008.
- R. Kress. Linear Integral Equations. Springer Verlag, Berlin, Heidelberg, New York, 3rd edition, 2014.
- A. K. Louis. Inverse und schlecht gestellte Probleme. Teubner Verlag, Stuttgart, 1989.
- V. Michel. Geomathematics – Modelling and Solving Mathematical Problems in Geodesy and Geophysics. Cambridge University Press, 2022.
- F. Natterer. The Mathematics of Computerized Tomography. Teubner, Stuttgart, 1986.
- F. Natterer, F. Wübbeling. Mathematical methods in image reconstruction. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
- R. Potthast. Point sources and multipoles in inverse scattering theory, volume 427 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2001.
- R. Potthast, G. Nakamura. Inverse Modeling – An Introduction to the Theory and Methods of Inverse Problems and Data Assimilation. Institute of Physics (IOP), Bristol, 2015.
- A. Rieder. Keine Probleme mit Inversen Problemen. Vieweg, Braunschweig, 2003.
- O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Variational methods in imaging, volume 167 of Applied Mathematical Sciences. Springer, New York, 2009.
- T. Schuster. The Method of Approximate Inverse: Theory and Applications. In Lecture Notes in Mathematics, Vol. 1906, Springer, Berlin-Heidelberg-NewYork, 2007.
- T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski. Regularization Methods in Banach Spaces. Radon Series on Computational and Applied Mathematics. deGruyter, Berlin, 2012.