July 14, 2024


  1. J. Baumeister. Stable Solution of Inverse Problems. Vieweg, Braunschweig, 1987.
  2. A. Borzi. Modelling with Ordinary Differential Equations. A Comprehensive Approach. (Chapter 11: Inverse problems with ODE models.) Chapman and Hall/CRC, first edition, 2020.
  3. D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin, Heidelberg, New York, forth edition, 2019.
  4. H. W. Engl. Integralgleichungen. Springer, Vienna, 1997.
  5. H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.
  6. M. Hanke. Conjugate gradient type methods for ill-posed problems, volume 327 of Pitman Research Notes in Mathematics Series. Longman Scienti c & Technical, Harlow, 1995.
  7. M. Hanke. A Taste of Inverse Problems: Basic Theory and Examples. SIAM, Philadelphia, 2017.
  8. B. Hofmann. Regularization of Applied Inverse and ill-posed Problems. Teubner, Leipzig, 1986.
  9. B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative Regularization Methods for Nonlinear ill-posed Problems. Radon Series on Computational and Applied Mathematics. de Gruyter, Berlin, 2008.
  10. A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York, Berlin, Heidelberg, 1996.
  11. A. Kirsch and N. Grinberg. The factorization method for inverse problems. volume 36 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2008.
  12. R. Kress. Linear Integral Equations. Springer Verlag, Berlin, Heidelberg, New York, 3rd edition, 2014.
  13. A. K. Louis. Inverse und schlecht gestellte Probleme. Teubner Verlag, Stuttgart, 1989.
  14. V. Michel. Geomathematics – Modelling and Solving Mathematical Problems in Geodesy and Geophysics. Cambridge University Press, 2022.
  15. F. Natterer. The Mathematics of Computerized Tomography. Teubner, Stuttgart, 1986.
  16. F. Natterer, F. Wübbeling. Mathematical methods in image reconstruction. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
  17. R. Potthast. Point sources and multipoles in inverse scattering theory, volume 427 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2001.
  18. R. Potthast, G. Nakamura. Inverse Modeling – An Introduction to the Theory and Methods of Inverse Problems and Data Assimilation. Institute of Physics (IOP), Bristol, 2015.
  19. A. Rieder. Keine Probleme mit Inversen Problemen. Vieweg, Braunschweig, 2003.
  20. O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Variational methods in imaging, volume 167 of Applied Mathematical Sciences. Springer, New York, 2009.
  21. T. Schuster. The Method of Approximate Inverse: Theory and Applications.  In Lecture Notes in Mathematics, Vol. 1906, Springer, Berlin-Heidelberg-NewYork, 2007.
  22. T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski. Regularization Methods in Banach Spaces. Radon Series on Computational and Applied Mathematics. deGruyter, Berlin, 2012.